Femto-photography: capturing and visualizing the propagation of light Citation
نویسندگان
چکیده
We present femto-photography, a novel imaging technique to capture and visualize the propagation of light. With an effective exposure time of 1.85 picoseconds (ps) per frame, we reconstruct movies of ultrafast events at an equivalent resolution of about one half trillion frames per second. Because cameras with this shutter speed do not exist, we re-purpose modern imaging hardware to record an ensemble average of repeatable events that are synchronized to a streak sensor, in which the time of arrival of light from the scene is coded in one of the sensor’s spatial dimensions. We introduce reconstruction methods that allow us to visualize the propagation of femtosecond light pulses through macroscopic scenes; at such fast resolution, we must consider the notion of time-unwarping between the camera’s and the world’s space-time coordinate systems to take into account effects associated with the finite speed of light. We apply our femto-photography technique to visualizations of very different scenes, which allow us to observe the rich dynamics of time-resolved light transport effects, including scattering, specular reflections, diffuse interreflections, diffraction, caustics, and subsurface scattering. Our work has potential applications in artistic, educational, and scientific visualizations; industrial imaging to analyze material properties; and medical imaging to reconstruct subsurface elements. In addition, our time-resolved technique may motivate new forms of computational photography. ∗Currently at Morgridge Institute for Research, University of Wisconsin at Madison. †Currently at Tsinghua University. ‡Currently at College of Engineering, Pune. CR Categories: Computing Methodologies: Computer Graphics — Image Manipulation — Computational Photography
منابع مشابه
Compressive light field photography using overcomplete dictionaries and optimized projections Citation
Light field photography has gained a significant research interest in the last two decades; today, commercial light field cameras are widely available. Nevertheless, most existing acquisition approaches either multiplex a low-resolution light field into a single 2D sensor image or require multiple photographs to be taken for acquiring a high-resolution light field. We propose a compressive ligh...
متن کاملReporting an Experience: Improving the Feulgen Staining Technique for Better Visualizing of Nucleus
Among different staining methods used to demonstrate the nuclear abnormalities, Feulgen is one of the most reliable method. Feulgen staining is specific, sensitive method for evaluating the DNA damages.It has been shown that using non-DNA specific stains for monitoring the nuclear anomalies lead to false-positive or false-negative results. From self-experience, immersing the stained slides in h...
متن کاملAbsorption length for photon propagation in highly dense colloidal dispersions
The absorption length for photon propagation in highly concentrated colloidal dispersions calculated from temporal intensity profiles of 100 femto-second pulses is much longer than the absorption length obtained from the measurements of static light transmission in the pure continuous phase fluid. The difference between these two values is explained on the basis of small interparticle spacing a...
متن کاملFinite-Difference Time-Domain Simulation of Light Propagation in 2D Periodic and Quasi-Periodic Photonic Structures
Ultra-short pulse is a promising technology for achieving ultra-high data rate transmission which is required to follow the increased demand of data transport over an optical communication system. Therefore, the propagation of such type of pulses and the effects that it may suffer during its transmission through an optical waveguide has received a great deal of attention in the recent years. We...
متن کاملModeling Time Resolved Light Propagation Inside a Realistic Human Head Model
Background: Near infrared spectroscopy imaging is one of the new techniques used for investigating structural and functionality of different body tissues. This is done by injecting light into the medium and measuring the photon intensity at the surface of the tissue.Method: In this paper the different medical applications, various imaging and simulation techniques of NIRS imaging is described. ...
متن کامل